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Summary. The aim of this chapter is to give a pedagogical presentation of mul-
tiphase models in their application to the study of tumour growth. Starting from
the simplest concepts, we shall describe how to deduce multiphase models, paying
attention to the general modelling framework and on how to model the different
terms appearing in the equations. A particular attention is also devoted to the defi-
nition of the interaction between cells and extracellular matrix. In this way a general
model is deduced which is then specialized in examples describing avascular phase
and vascular phases of growth, and the formation of fibrosis.

1 Introduction

Mixture theory has been applied to describe the mechanics of biological tissues
since the sixties. Most of the work was focused on the behaviour of articular
cartilages [24, 29, 30, 34, 35, 36, 37], but applications can be found to many
soft tissues, e.g., brain [39, 47], heart mechanics [49, 53, 54], subcutaneous
layer [40], flow through arteries [26, 27, 28].

In the last few years mixture theory has been also applied with success
to tumour growth. Examples of applications can be found in [10, 11, 12, 13,
16, 18, 19, 20] while [3, 5, 23] are review papers on this approach and on
the mechanical aspects related to tumour growth. Here, we shall deduce a
general multiphase modelling framework for few but essential constituents
(cells, extracellular matrix, and extracellular liquid with the solutes dissolved
in it). We shall also show how to take into account several sub-populations of
the cells, and several components of the extracellular matrix (ECM).

There are three basic hypotheses that allow to obtain a manageable model
even in the case of more constituents involved. The first hypothesis is an as-
sumption that the components of the extracellular matrix form such an in-
tricate network that they all move together so that the same deformation
and velocity describe their evolution. The second one consists in assuming
that the pressure gradient and the interaction forces involving the liquid are
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much smaller than the others, e.g., the adhesion force between cells and ex-
tracellular matrix. The third one consists in assuming that cells mechanically
respond to the compression coming from the surrounding cells in the same
way independently from the cell type.

All the steps of the modelling procedure are explained in detail, special
attention being paid to the meaning of all the different terms involved in the
model. Some examples are given to clarify how to model them. Specifically,
in Section 2 we deal with mass balance equations, in Section 3 with force
balance equations. Section 4 is in large part devoted to the description of the
interaction between the cells and the extracellular matrix. In Section 5 we
address the issue of how to deduce a proper constitutive model for the stress,
though the reader is referred to more specific literature for further details
[3, 4, 5, 23]. Finally, in the last three sections, the general model is specialized
to describe tumour growth in an immutabile ECM (rigid, non-remodelling),
including the mechanical interaction with the host tissue, the growth in a rigid
remodelling ECM with the aim of showing the formation of fibrosis, and the
growth of a vascularized tumour, with a particular focus on how to relate cell
metabolism to growth terms.

2 Mass Balance

Soft tissues are mainly made of cells and extracellular matrix (ECM). The
porous material that this ensemble forms is wet by an extracellular liquid full
of chemicals: nutrients, growth factors, chemotactic factors, and so on (see
Fig. 1a).

Of course, the typical size of cells and ECM composed of aggregated pro-
teins is much bigger than that of dissolved proteins. So, one can assume that
the space occupied by the latter is negligible and one can treat them as part
of the extracellular liquid.

For all the constituents of the mixture we define their volume ratios as
follows. Given a point in the mixture consider a sequence of spheres with the
centres at the point (Fig. 1b). Measuring the ratio of the volume of a given
constituent inside the sphere to the volume of the sphere one may observe the
dependency shown in Fig. 1c. For small sample volumes the ratio is likely to
oscillate due to microscopic inhomogenity. Macroscopic inhomogenities may
affect the ratio for large sample volumes. However for sample volumes in
between, at scales larger than the cell size and smaller than typical tissue
scale, it is nearly constant and allows us to define a quantity called volume
ratio of the constituent.

Let us denote by φ ∈ [0, 1] and m ∈ [0, 1] the volume ratios occupied by
cells and by the extracellular matrix respectively. The mixture is saturated if
the rest of the space is filled by extracellular liquid ` ∈ [0, 1], i.e.,

φ+m+ ` = 1 . (1)
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Fig. 1. (a) Tissue with fibroblasts and extracellular matrix. Three sample volumes
are shown as black circles in (b), ECM in white, cells in darker tint, the rest is
extracellular liquid. (c) Volume ratio of the constituent as a function of sample
volume size.
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In some models the upper constraint on the volume ratio is replaced by a con-
stant value φ < 1, possibly space dependent, allowing for some fixed portion of
space to be occupied by other constituents not considered in the mixture, e.g.,
vessels or a general stroma. In this case the saturation constraint is replaced
by

φ+m+ ` = φ , (2)

with all volume ratios in [0, φ].
If φ is space independent, it is possible to rescale the variables as φ̃ := φ/φ,

m̃ := m/m, l̃ := l/l to have φ̃+ m̃+ l̃ = 1.
In order to define the mass balance equations for the different constituents

consider a general volume V fixed in space with boundary ∂V. To be specific
we shall focus on the cellular constituent of the tissue. If ρ is the density
within the cells, the mass of the constituent in V∫

V
ρφ dV

can change due to:

1. Flux caused by the motion of the constituent through the boundary ∂V

−
∫
∂V
ρφvφ · n dΣ ,

where vα is the cell velocity and n is an external normal to the boundary
∂V;

2. Growth or death of cells ∫
V
ρΓφ dV ,

where Γφ is the mass exchange rate or growth/death rate for the cellular
mass.

One then has

d

dt

∫
V
ρφ dV = −

∫
∂V
ρφvφ · n dΣ +

∫
V
ρΓφ dV .

Using Gauss theorem, one can write∫
V

[
∂

∂t
(ρφ) +∇ · (ρφvφ)− ρΓφ

]
dV = 0 ,

and, if the integrands are smooth, because of the arbitrariety of the volume
of integration V,

∂

∂t
(ρφ) +∇ · (ρφvφ) = ρΓφ . (3)

where ρ can be taken constant and equal to the density of water.
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Generalizing the procedure for all the variables mentioned above one can
write the mass balance equations

∂φ

∂t
+∇ · (φvφ) = Γφ ,

∂m

∂t
+∇ · (mvm) = Γm ,

∂`

∂t
+∇ · (`v`) = Γ` .

(4)

If the mixture is closed so that mass exchange occurs only between the
constituents taken into consideration then

Γφ + Γm + Γ` = 0 , (5)

where for the sake of simplicity we assumed that all constituents of the tissue
have equal density ρ, the density of the extracellular liquid.

In other case, when external mass sources/sinks are introduced to describe
outflow/inflow processes related, for example, to a homogenised vascular or
lymphatic structure, the condition (5) might be dropped. This approach is,
for instance, used in [18, 19, 20]. However, also in this case one needs to assure
that the solution never violates the geometrical constraint (1) or (2) during
the evolution.

According to the details needed to describe the phenomenon of interest, it
may be necessary to distinguish different cell populations, e.g., tumour cells,
endothelial cells, epithelial cells, fibroblasts, macrophages, lymphocytes, or
to distinguish different clones within the same population characterized by
relevant differences in their behaviour, or to distinguish the cells according to
their phase in the cell cycle, e.g. G0, G1, G2.

If this is the case, the first equation in (4) must be split in I equations,
one for each of the I subpopulations:

∂φi
∂t

+∇ · (φivφi
) = Γφi

, i = 1, . . . , I , (6)

where φi is the volume ratio of the subpopulation i, vi is its velocity and Γφi

is its mass exchange rate. Of course,

I∑
i=1

φi = φ ,

I∑
i=1

φivφi = φvφ ,
I∑
i=1

Γφi = Γφ , (7)

and therefore summing all (6) over i gives back the first equation in (4).
Similarly, because of the different mechanical behaviour and chemical

properties, it might be necessary to distinguish the different components of
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the ECM, e.g. collagen, elastin, fibronectin, vitronectin, proteoglycans. One
then has

∂mj

∂t
+∇ · (mjvm) = Γmj , j = 1, . . . , J , (8)

where mj is the volume ratio of the j-th component and Γmj
is its remodelling

rate. We explicitly notice that in (8) the ECM velocity is taken to be the
same for all ECM components, which means describing them as an intricate
network of fibres that have to move all together. This is called a constrained
sub-mixture assumption. As before

J∑
j=1

mj = m,

J∑
j=1

Γmj = Γm , (9)

and summing (8) over j gives the second equation in (4).
Other fundamental factors influencing tumour evolution are the various

proteins and chemicals that govern the growth and the behaviour of the cells.
One can treat them as solutes dispersed in the extracellular liquid, transported
and diffusing with it. Their concentrations are the quantities of interest from
the modelling point of view.

For the sake of simplicity, consider some chemical and denote by cα its
concentration per unit volume within the constituent α of the mixture, where
for instance α might be φ, `, or m. However, the concentration cα has to
be related to the volume ratio occupied by the constituent in which it is
present, so that finally the relevant entities for an overall balance over the
whole mixture are the reduced (or weighted) concentrations, e.g., C` = `c`.

To be specific consider the diffusion in the liquid constituent. In order to
compute its balance we have to consider the motion of the fluid, the diffusive
flux, the absorption of the liquid in which the chemical is dissolved and the
absorption of the chemical without absorption of the liquid, e.g. by osmosis.

One then has the following integral balance equation

d

dt

∫
V
`c` dV = −

∫
∂V
`c`v` ·n dΣ−

∫
∂V
`j` ·n dΣ+

∫
V
Γ`c` dV +

∫
V
Gc dV , (10)

where j` is diffusive flux inside liquid

j` = D`∇c`
and Γc is the chemical exchange rate (rate of production/uptake). Taking for
instance Γ` negative, the term

∫
VΓ`c` dV reflects adoption of the chemical by

other constituents of the mixture through the means of capturing the liquid.
Therefore the following reaction-convection-diffusion equation can be de-

duced
∂

∂t
(`c`) +∇ · (`c`v`) = ∇ · (`j`) +Gc + Γ`c` . (11)
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This equation can be written in terms of C` = `c`, but Fick’s law states
that the diffusive flux can be assumed to be proportional to the concentration
gradient in the liquid, that is

j` = D`∇c` = D`∇C`
`
, (12)

where D` = D`(φ`) is the effective diffusion tensor in the liquid which accounts
for diffusion of the chemical in the liquid due to Brownian motion as well as
for molecules dispersion due to the porous structure of the mixture (see [8]).
Hence, one has

∂C`
∂t

+∇ · (C`v`) = ∇ ·
(
`D`∇C`

`

)
+Gc + Γ`

C`
`
. (13)

On the other hand, using the mass balance equation for the liquid (4)3,
Eq. (11) simplifies to

`

(
∂c`
∂t

+ v` · ∇c`
)

= ∇ · (`D`∇c`) +Gc . (14)

Similar equations can be written for the concentration of chemicals in the
other constituents. However, if exchange of the chemical between the con-
stituents is so fast that one might assume that concentration of the chemical
is the same for all the constituents:

c = cl = cφ = cm,

then the summation gives

∂c

∂t
+ vc · ∇c = ∇ · (D∇c) +G , (15)

where D is an effective diffusivity tensor in the mixture, G contains produc-
tion/source terms and degradation/uptake terms relative to the entire mixture
and vc = φvφ + `v` + mvm is the composite velocity. Actually, the related
convective term can be neglected in most applications, so that one can write

∂c

∂t
= ∇ · (D∇c) +G . (16)

The procedure above can be generalized to all soluble molecules which are
considered relevant to tumour development.

3 Force Balance

Several methods have been used to close the system of mass balance equations
introduced in the previous section (the reader is referred to [3] for a critical
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review on this aspect). We here focus on the use of momentum balance equa-
tions, which we start writing in integral form for a generic constituent for
pedagogical reasons to clarify the origin of all terms appearing in the equa-
tions.

Focusing again on the cellular constituent of the tissue the variation of
momentum of the constituent in the fixed volume V∫

V
ρφvφ dV

is due to

1. Momentum flux caused by the motion of the cells through the bound-
ary ∂V

−
∫
∂V
ρφvφ(vφ · n) dΣ ;

2. Contact forces within the constituent acting through the boundary ∂V,
which are codirected with n, therefore yielding∫

∂V
T̃T
φn dΣ ,

where T̃φ is called partial stress;
3. Contact forces due to the interaction with the other constituents within

the domain through the interface separating the constituents, say the cell
membrane wet by the extracellular liquid or in contact with the extracel-
lular matrix through the adhesion sites∫

V
m̃φ dV ,

where m̃φ is called interaction force;
4. Momentum supply related to phase changes∫

V
ρΓφvφ dV ,

e.g., fluid absorbed by a growing cell, ECM production or degradation;
5. Body forces ∫

V
ρφb dv ,

e.g., chemotaxis or haptotaxis can be modelled in this way, though they
actually involve the activation of sub-cellular mechanisms rather than an
external action.

One then has

d

dt

∫
V
ρφvφ dV =

∫
∂V

[
−ρφvφ(vφ · n) + T̃T

φn
]
dΣ+

∫
V

(ρφb+m̃φ+ρΓφvφ) dV .

(17)
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So using Gauss theorem we can write∫
V

[
∂

∂t
(ρφvφ) +∇ · (ρφvφ ⊗ vφ)−∇ · T̃φ − ρφb− m̃φ − ρΓφvφ

]
dV = 0 .

(18)
This holds for any volume of integration V. So, if the integrand is smooth,

one can write the following local form of the momentum balance for the solid
constituent in conservative form

∂

∂t
(ρφvφ) +∇ · (ρφvφ ⊗ vφ) = ∇ · T̃φ + ρφb + m̃φ + ρΓφvφ . (19)

Actually using the mass balance equation (4)1, Eq. (19) can be simplified
as

ρφ

(
∂vφ
∂t

+ vφ · ∇vφ

)
= ∇ · T̃φ + ρφb + m̃φ , (20)

where the inertial term on the left hand side can be usually neglected when
describing biological growth phenomena.

If a saturation condition like (1) is assumed, then the constitutive equa-
tions for the partial stresses and for the interaction forces are characterized
by the presence of a Lagrange multiplier classically identified with the inter-
stitial pressure of the extracellular liquid [9, 45]. Without going into technical
details, this is related to the fact that in checking the validity of the second
principle of thermodynamics, one is considering only all those processes satis-
fying the saturation constraint. The presence of a constraint implies the need
of introducing a Lagrange multiplier in Clausius–Duhem inequality, so that it
is considered for any process such that the saturation constraint holds.

A similar reasoning is usually done in fluid dynamics where enforcing in-
compressibility implies that one is studying only flows satisfying such a con-
straint and for this class of processes the second principle of thermodynamics
should hold. The consequence is that in the constitutive equation for the fluid,
the isotropic part of the stress tensor can not be determined constitutively but
is a reaction that adjusts so that the incompressibility constraint is satisfied.

In the case of the saturated mixture, for instance, it can be proved that

T̃φ = −φP I + φTφ , m̃φ = P∇φ+ mφ , (21)

where Tφ is called excess stress and mφ excess interaction force.
One then has

−φ∇P +∇ · (φTφ) + mφ + ρφb = 0 . (22)

Proceeding in a similar way for the other constituents and specifying, if
needed, the different force balance equations for the cellular components one
can write



10 S. Astanin and L. Preziosi

−φi∇P +∇ · (φiTφi
) + mφi

+ ρφibi = 0 ,

−m∇P +∇ · (mTm) + mm = 0 ,

−`∇P + m` = 0 ,

(23)

where the excess stress tensor for the extracellular liquid is assumed to be
negligible, as it is usually done in the theory of deformable porous media to
obtain Darcy’s law like behaviour, and the body forces are dropped in the
equations for the ECM and for the liquid [9, 45].

We observe explicitly, that even if several ECM components need be spec-
ified, the constrained sub-mixture hypothesis allows to write a single force
balance equation to determine the common velocity vm. Of course, all the
ECM components will contribute to the constitutive equation for the stress
tensor according to their relative proportion.

4 Interaction Forces

If the mixture is closed, one may demonstrate that in mixture theory the sum
of interaction forces and of the momentum transfers due to mass exchange
is zero [9, 45]. However, the contribution due to mass exchange is negligible
with respect to that due to the interaction forces [42], compatibly with the
fact that inertial terms are negligible. Hence, one can say that the interaction
forces sum up to zero, as it might be expected since they act as internal forces
among the constituents of the whole mixture.

We reinforce this concept of internal forces by assuming that if the con-
stituent β exerts an interaction force mαβ on the constituent α, in turn the
constituent α will exert on β an equal and opposite force, i.e., mαβ = −mβα,
being aware of the fact that this equality is an approximation, for instance,
for the presence of exchanges of mass.

We distinguish among the interaction forces those involving the extracel-
lular liquid, because they can be treated as drag forces. The others might
require better understanding of the adhesion mechanisms.

Compatibly with Darcy’s law, the interaction forces of all the constituents
with the liquid can be taken to be proportional to the velocity difference
between the liquid and the other constituents through invertible matrices
Mi, and Mm, so that

m`φi
= −Mi(v` − vφi

) ,
m`m = −Mm(v` − vm) , (24)

where Mi and Mm are invertible matrices. Therefore, in the last equation of
(23) m` = m`m +

∑
im`φi . One then has

Mm(v` − vm) +
I∑
i=1

Mi(v` − vφi) = −`∇P , (25)
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or

v` = M−1

(
Mmvm +

I∑
i=1

Mivφi − `∇P
)
, (26)

where M = Mm +
∑
iMi, which explicitly gives the liquid velocity in terms

of the other velocities and of the pressure gradient.
Furthermore, summing the mass balance equations (4) one has for a closed

mixture

∇ ·
(
`v` +mvm +

I∑
i=1

φivφi

)
= 0 , (27)

which substituting the velocity of the liquid reduces to

∇ · (`2M−1∇P ) = ∇ ·
[

I∑
i=1

(φiI + `M−1Mi)vφi + (mI + `M−1Mm)vm

]
.(28)

It is now useful to distinguish between two contributions in the momentum
equations for cells and ECM:

• Contributions due to the interactions with the extracellular liquid and to
the pressure gradient;

• Contributions related to the interaction between cells and between cells
and ECM.

In many cases the former are less important and can be dropped. Then
the momentum equations can be simplified into

∇ · (φiTφi
) +

I∑
j=1
j 6=i

mij + mim = 0 , i = 1, . . . , I ,

∇ · (mTm)−
I∑
i=1

mim = 0 .

(29)

Under these hypotheses Eq. (29) does not depend on the interstitial pres-
sure or on the liquid velocity. Therefore, they can in principle be solved with-
out solving (27) and (28). Integration of (27) and (28) is only required if we
want to describe the evolution of either the interstitial pressure, or of the liq-
uid velocity. They are obtained in cascade after integrating the equations (29)
above.

Regarding the behaviour of the cell population, we can assume that they
respond to the compression of other cells independently from their type, i.e.

Tφi
= Tφ . (30)
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An additional requirement is that the sum of the equations for the cell con-
stituents yields

∇ · (φTφ) +
I∑
i=1

mim = 0 . (31)

This can be achieved assuming that the cells belonging to the i-th popula-
tion press those of the j-th population with a force proportional to ∇·(φiTφ),
and at the same time are pressed by the latter with a force proportional to
∇ · (φjTφ). In view of an integral balance law, these contributions need to be
multiplied by the volume ratio of the population they act upon, with reference
to the overall cellular component of the mixture φ. This suggests that the net
interaction force mij might take the following form

mij =
φi
φ
∇ · (φjTφ)− φj

φ
∇ · (φiTφ), (32)

so that the momentum equations for the cell populations specialize (29)1 as

φi
φ
∇ · (φTφ) + mim = 0 , i = 1, . . . , I , (33)

that sum up to the force balance equation for the sub-mixture of cells (31).
We observe that summing all Eqs.(33) and (29)2 gives the force balance

equation for the tissue

∇ · (φTφ +mTm) = 0 , (34)

with the pressure gradient term and the interaction forces with the liquid
neglected, compatibly with the assumptions done before writing Eqs.(29).

Let us focus now more specifically on the interaction between cells and
ECM which of course depends on both the volume ratios of the ECM con-
stituents and of the cells, and therefore also on the available portion of space
` occupied by the liquid.

Though as a first approximation one can still assume the interaction terms
to be proportional to the velocity differences as done when the liquid phase
was involved, i.e.,

mim = −Mim(vi − vm) , (35)

a better description of the attachment/detachment mechanisms between cells
and ECM would be desirable.

An alternative form for the interaction terms is proposed in [44] on the
basis of the experiments performed by Baumgardner et al. [7], Canetta et al.
[14], and Sun et al. [51] who measured the adhesive strength of a cell attached
to a microsphere linked to the tip of an atomic force microscopy cantilever.
The microsphere might present proper adhesion molecules on its surface in
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order to check the specific interaction of the cell adhesion molecule with those
on the tip of the cantilever.

After putting the microsphere in contact with the cell, the cantilever is
pulled away at a constant speed (in the range 0.2–4 µm/sec). If there is no
adhesion between the microsphere and the cell, the force measured presents
no stretching when the microsphere is taken away from the cell. This is ex-
perimentally obtained, for instance, by the addition of an antibody attaching
to the external domain of the adhesion molecule, or by interfering with the
links between the adhesion molecules and the cell cytoskeleton.

On the other hand, adhesion gives rise to the measurement of a stretching
force and a characteristic jump indicating the rupture of an adhesive bond.
Therefore these bonds have a limited strength quantified to be in the range
35–55 pN each by Baumgardner et al. [7].

A similar result was also obtained by Sun et al. [51] who did not function-
alize the microsphere and allowed a longer resting period on the cell surface,
ranging from 2 to 30 seconds. Again, pulling away the cantilever at a constant
speed in the range 3–5 µm/sec caused the rupture of one or more adhesive
bonds. They used different cell types (Chinese hamster ovary cells, endothe-
lial cells and human brain tumour cells), all showing an adhesive strength of
a single bond slightly below 30 pN. Coating the bead with poly-L-lysine or
collagen did not lead to significant changes in the measurement.

On the other hand, big differences were observed interfering with the ad-
hesion mechanism either by capping the external domain of the adhesion
molecule with a proper antibody [7], or by disrupting the actin cytoskeleton
[51], or by eliminating the link between adhesion molecules and the cytoskele-
ton [14].

It is not trivial to quantitatively transfer this measurement done at a
molecular scale to a constitutive law at a tissue scale. However, we can say
that this phenomenological description suggests that if cells are not pulled
strong enough to detach from the ECM, they remain attached to it. If they
detach the force in excess can be assumed to be proportional to the velocity
difference, as suggested by viscoplasticity theory.

This translates into the following constitutive assumption

vi = vm , if |mim| ≤ σim ,

(|mim| − σim)
mim

|mim| = αim(vm − vi) , if |mim| > σim .
(36)

The coefficient σim can be compared to a friction force and as such it is
expected to depend on the adhesion mechanisms and on the volume ratio of
the actors, the cells and the ECM. Proportionality between velocity and the
force is a starting assumption made in absence of more precise experimental
data.

From (33)
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−mim

vi − vm

−σim

+σim

Kim

Fig. 2. Viscoplastic cell–ECM interaction.

mim = − φi
φ
∇ · (φTφ) ,

and therefore Eq. (36) can be rewritten as

vi − vm = Kim

(
φi
φ
− σim
|∇ · (φTφ)|

)
+

∇ · (φTφ) (37)

where (·)+ stands for the positive part of the parenthesis and Kim = α−1
im

is called in this chapter motility coefficient of the i-th cell population. This
behaviour is presented in Figure 2. Equation (37) replaces Eq. (33) and has
to be solved jointly with Eq. (29)2 or (34).

To better understand the meaning of the constitutive equations above
we can make some calculations for |mim| > σim. Taking the modulus of
Equation (36), one has

αim|vm − vi| = |mim| − σim .

Replacing |mim| in the same equation, it can be rewritten as

αim|vi − vm| mim

σim + αim|vi − vm| = αim(vm − vi) ,

or
mim = σim

vm − vi
|vm − vi| + αim(vm − vi) ,

which allows to distinguish in mim a static contribution in the direction of
the relative motion (the first term) from a drag contribution proportional to
the velocity difference. Of course, a viscous drag force is recovered in the limit
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σim = 0. As already mentioned the friction force σim strongly depends on
the concentration of ECM. For instance, increasing the concentration of ECM
leads to an increase in activated adhesion sites and therefore in a stronger
friction threshold. In addition, it is known that there is an optimal concentra-
tion of ECM favouring motility, because the content of ECM can not become
too small, otherwise the lack of substratum would lead to a decrease in cell
motility. Then the observation that cells hardly move when there is little or
too much ECM can be translated as σim increasing for small and “large” m,
thus, effectively, prohibiting cellular motion.

5 Stress Tensors

The momentum equations discussed in the previous sections need to be ac-
companied by the constitutive equations describing the response of the cells
and ECM component to stress.

The basic questions are: How does the tumour behave? Is it a liquid or a
solid? How should we summarize in a macroscopic constitutive equation cell
adhesion properties? Should we take viscous or viscoelastic effects into ac-
count? What about plastic or viscoplastic deformations? Does a multicellular
spheroid possess surface tension?

These questions are not at all trivial and there is no definitive answer
yet, especially because of the lack of experiments. In fact, from the experi-
mental point of view it is very difficult to perform mechanical tests on living
matter, and in particular on ensembles of cells. In this respect Winters et
al. [52] performed a wonderful and very promising experiment consisting in a
uni-axial compression test. More precisely, multicellular spheroids with radii
in the range 0.15–0.7 mm were positioned between two plates immersed in a
physiological liquid. The lower plate was raised and the force acting on the
upper plate was measured using a Cahn electrobalance. Two different com-
pressions were performed for each multicellular spheroid in order to check
whether an elastic model or a liquid model with surface tension was more
proper to describe the mechanical response. In the latter case the measured
surface tension should be independent of the deformation, in the former case
it would not and their ratio should be close to ratio of measured force. Of
course, as stated in the paper, only measurements in which surface tension is
independent of the applied force and size can be used to calculate for each cell
line the value of surface tension. In most cases they concluded that the mul-
ticellular spheroid behaves like a liquid. However, in other cases they found
that the behaviour was elastic (see Table 1). They argue that this might be
explained with a production of ECM by the cells in the multicellular spheroid.

Unfortunately, uniaxial test can not exclude that what they are measuring
is actually the yield stress that need to be imposed before rupturing the
adhesion sites among molecules. It would be interesting to perform shear
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Table 1. Force ratio and deduced surface tension measurement for different cell
lines (data from [52]).

Cell line Surface tension (dynes/cm±SEM) ratio force ratio material

U-87MG 6.9± 0.4 and 7.1± 0.3 1.0 1.6 liquid

U-118MG 16.3± 0.3 and 17.2± 0.5 1.1 1.5 liquid

LN-229 TE/C 10.3± 0.3 and 10.0± 0.4 1.0 1.5 liquid

LN-229 TE 8.2± 0.9 and 12.4± 0.9 1.6 1.6 elastic

tests. This would establish with no doubt at what class of material we should
look at to obtain a good constitutive equation to describe tumour growth.

Some results in this direction are obtained by Iordan and Verdier (to be
published). They put in a plate-and-plate rheometer a cell suspension at dif-
ferent concentrations proving the existence of a yield stress at higher concen-
trations (say, greater than 40%, i.e., φ > 0.4).

Another theoretical difficulty comes when one wants to describe tumour
as solids, because they are growing, remodelling and re-organising while de-
forming. This brings to two difficulties that need to be properly addressed if
we want to describe tumours as solid masses

• defining a reference configuration with respect to what we can measure
deformations;

• defining a proper Lagrangian coordinate system.

More precisely, following the ideas presented in [25, 46] (see also [33]), one
needs to describe how the natural configuration evolves in time due to growth
and internal re-organisation. Ambrosi and Mollica [1, 2] use a purely elas-
tic one–component model to evaluate residual stress formation in a growing
multicellular spheroid. This approach was developed in [4] working in a mul-
tiphase framework and taking also internal re-organisation and ECM defor-
mation into account. This gave rise to an elasto-viscoplastic description for
the cell population and a compressive elastic description for the ECM.

We refrain from entering in detail in this type of constitutive models,
because it is too lengthy to fit this chapter. We suggest our reader to refer to
the works mentioned above for further details on this topic.

We also refrain from dealing with viscoelastic constitutive models for a
different reason. In fact, though viscoelastic characteristics are important in
describing the mechanical behaviour of tissues, they are less important in
describing growth. This is due to the fact that the characteristic times of
the mechanical response of biological materials are of the order of tens of
seconds (see for instance, Forgacs et al. [17]), and therefore much less than
the characteristic times of cell duplication (a day). Therefore, the effect of
viscoelasticity fades away quite quickly with respect to the time the material
requires to grow leaving only a viscous heritage [43].
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In most of the multiphase models of tumour growth deduced in the liter-
ature the tumour is modelled as a fluid. This approach, in fact, circumvents
the difficulties mentioned above, mainly for two related reasons:

• the stress depends on the volume ratios and on the rate of deformations;
• it is possible to use an Eulerian approach.

Of course, tissues are not liquid and as stated above even ensembles of cells
are unlikely to behave as a liquid. However, in this modelling approach the
“cellular liquid” is contained in a solid structure of the ECM, so the material
as a whole would look like a viscoelastic solid.

The easiest constitutive equation for the ensemble of cells consists in as-
suming that they behave as an elastic fluid, i.e.,

Tφ = −ΣI ,

where Σ is taken positive in compression. The use of this constitutive equation
would result in a multicellular spheroid that in absence of ECM is not able to
sustain shear.

In this case one can substitute (37) in the mass balance equations to obtain
the following model

∂φi
∂t

+∇ · (φivm) +∇ ·
[
φiKim

(
φi
φ
− σim
|∇(φΣ)|

)
+

∇(φΣ)

]
+ Γφi

,

∂mj

∂t
+∇ · (mjvm) = Γmj ,

∇ · (mTm)−∇(φΣ) = 0 ,

(38)

for i = 1, . . . , I and j = 1, . . . , J .
A possible extension is to consider a viscous behaviour as done in [13, 18,

19, 20]
T̂T = (−Σ + λ∇ · vφ)I + 2µD , (39)

where D = (∇vφ + ∇vTφ )/2 is the rate of strain tensor. This constitutive
equation has the advantage to confer more stability to the growing mass.

6 Tumour Growth in a Rigid ECM

Coming to applications we start with the easiest case, when the ECM is rigid
and does not change. The reader has to be aware of the fact that an immediate
consequence of this hypothesis would be that from the macroscopic point of
view the tissue would behave like a rigid porous medium, with cells and water
moving inside a rigid scaffold. Any stress acting on the bulk tissue would be
sustained by the ECM and cells in the core of the tissue would experience no
stress deriving directly from the external actions.
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From the mathematical point of view, this means that the stress tensor
Tm acts as a (tensor) Lagrangian multiplier to satisfy the constraint vm = 0.

As an example, we apply the modelling approach above to the growth of
a tumour in a host enviroment using only two cell populations, tumour cells
with volume ratio φt and host cells with volume ratio φn initially occupying
different domains Ωt(t = 0) and Ω \Ωt(t = 0).

The interface ∂Ωt(t) between tumour and environment is a material sur-
face moving with the common velocity of the cells

n · dxt
dt

= n · vt = n · vn , on ∂Ωt(t) . (40)

It can be shown that the two cell populations stay segregated at all times.
Taking into account that the interface conditions are enforced through conti-
nuity of stress and velocity, and treating for sake of simplicity the ensemble
of cells as elastic fluids, we have the following free boundary problem:

∂φt
∂t

+∇ · (φtvφt
) = Γφt

, in Ωt ,

vt = −Ktm

(
1− σtm
|∇ · (φtΣ)|

)
+

∇(φtΣ) , in Ωt ,

∂φn
∂t

+∇ · (φnvφn
) = Γφn

, in Ω −Ωt ,

vn = −Knm

(
1− σnm
|∇ · (φnΣ)|

)
+

∇(φnΣ) , in Ω −Ωt ,

vt · n = vn · n , on ∂Ωt ,

φtΣ(φt) = φnΣ(φn) , on ∂Ωt .

(41)

Since the cell populations stay segregated, it is possible to introduce only
one variable for the volume ratio of cells: φ, and assume that φ is the volume
ratio of tumour cells φt in Ωt and the volume ratio of normal host cells φn in
Ωh:

φ =

{
φt, in Ωt ,

φn, in Ω \Ωt .
We can rewrite the main equation as

∂φ

∂t
= ∇ ·

[
φKm

(
1− σm
|∇ · (φΣ)|

)
+

∇(φΣ)

]
+ Γ , (42)

where, for instance, Km = Ktm in Ωt and Km = Knm in Ω \ Ωt. In this
formulation it is natural to use level set methods with the interface dividing
the domains moving according to (40).
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In [16] Ktm = Knm = Km, σtm = σnm = 0, and Σ = Σ(ψ) with ψ =
φt + φn + m. In addition, the growth terms are modelled on the basis of
the observation that when cells live in a crowded environment they sense
the presence of other cells through the activation of mechano-transduction
pathways. This phenomenon is called contact inhibition of growth and is one
of the fundamental phenomena in controlling cell concentration. In the model
this means that mitosis stops when the volume ratio (or the compression)
overcomes a given threshold.

The behaviour of the cells in terms of growth and motion then crucially
depends on how they feel the presence of other cells and how they translate
the mechanical cues. What Chaplain et al. [16] showed is that if for instance,
for some reason, e.g., a fault in the mechanotrasduction pathway, there is a
misperception of the compression state of the local tissue and then of the
subsequent stress which is exerted on a cell, then this degeneration can cause
a clonal advantage on the surrounding cells leading to the replacement and the
invasion of the healthy tissue with the formation of hyperplasia and therefore
tumour lesions.

From the mathematical point of view the phenomenological description
above can be formalized saying that the threshold value for tumour cells to
overcome the restriction point and commit themselves to divide is slightly
larger than the physiological one. Actually, it may even tend to infinity, mean-
ing that the cells are completely insensitive to compression and continue repli-
cating independently of the compression level.

We shall then consider the following growth terms

Γi = [γiHσ(ψ − ψi)− δi(ψ)]φi , i = n, t , (43)

where ψ = φn + φt +m. We assume that what makes the difference between
a normal and a tumour cell stays in the growth term and in its dependence
from the stress level.

Of course, cellular mechano-trasduction is not the only cause of formation
of hyperplasia and tumours. In fact, chemical factors operate to regulate the
reproduction rates so that the growth terms crucially depend on the presence
of growth promoting factors, of growth inhibitory factors and of course of
nutrients.

However, here we shall only focus on the possible role of stress on tumour
invasion and therefore assume that all the constituents required to sustain
growth and mitosis can be found abundant in the extracellular liquid.

In (43) Hσ(ψ − ψi) is a mollifier of the step function, which is at least
continuous, is constantly equal to 1 for ψ smaller than the threshold value ψi,
and vanishes for ψ > ψi + σ. According to the discussion above the threshold
values ψn and ψt are such that ψn < ψt. For the following discussion it is
useful to observe that a balance between cell growth and death occurs when
γiHσ(ψ − ψi) = δi(ψ), or, in the case in which δi is considered constant as in
the following simulations
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ψ = ψi +H−1
σ

(
δi
γi

)
, (44)

(a) (b)

(c) (d)

Fig. 3. Growth of a tumour in a heterogeneous tissue surrounding a bone. Denser
ECM is found near the points (0,10) and (5,5). (a), (c), and (d) give the cell volume
ratio φt + φn at the dimensionless times 5, 10, and 15. (b) gives the cell volume at
the section of the tumour along y = 6 for x ∈ [−6, 6] and t = 5.

The simulation in Figure 3 shows how some tumour cells originating from
the surface of a bone diffuse in the surrounding tissue. Initially, the interface
dividing the tumour from the host tissue is nearly circular. Far away from
the tumour mass the volume ratio occupied by the cells is that given in (44)
with ψn = 0.5, while in the core of the tumour it is that corresponding to
ψn = 0.6. Near the surface it is possible to observe a compression of the host
tissue as put in evidence by a cross section (y = 0.6) in Figure 3b, showing
the cell volume ratio. The interface between the two is located near the level
φt +φn = 0.59. However, growth is not occurring in a homogeneous tissue. In
fact, while in most of the domain the volume ratio occupied by the ECM is
0.2, there are two regions centered in (0,10) and (5,5) with a higher volume
ratio increasing up to 0.3. The presence of these heterogeneities breaks the
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symmetry of the tumour, as already evident in Figure 3b. Figures 3c,d show
how the presence of more ECM slows down tumour invasion

7 Tumour Growth in a Remodelling ECM

With little effort we can adjust the model to take ECM remodelling into
account. This is essential to describe the formation of fibrotic tissues and
therefore of stiffer stroma.

So we to additionally consider

• the volume ratio m occupied by the extracellular matrix;
• the concentration c of matrix degrading enzymes (MDEs).

The numerous constituents of the extracellular matrix, are produced in a
stress-dependent way by the cells and are degraded by MDEs [15, 32, 41, 50].

Hence the remodelling process can be described by adding an equation
for m:

∂m

∂t
= µn(Σ)φn + µt(Σ)φt − νcm , (45)

where µn and µt are the ECM production rates respectively by normal and
tumour cells and ν is the degradation coefficient due to the action of MDEs.

Active MDEs are produced (or activated) by the cells, diffuse throughout
the tissue and undergo some decay (either passive or active). So one has to
introduce the following reaction-diffusion equation governing the evolution of
MDE concentration

∂c

∂t
= κ∇2c+ πn(Σ)φn + πt(Σ)φt − c

τ
. (46)

where πn and πt are the MDE production rates respectively by normal and
tumour cells and τ is its half life.

In (45) it is important that the production coefficients of ECM by normal
and tumour cells be different in order to describe the formation of fibrosis
characterizing many tumours. Also the functions πn and πt describe the pro-
duction levels of active MDEs by normal and tumour cells, respectively. They
may be different and certainly depend on the compression level. As proved in
[16] they also can be the cause of the formation of fibrotic tissues.

Thus the complete system of equations with matrix remodelling effects
taken into account is:
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∂φn
∂t

= ∇ · [φnKm∇(φnΣ(ψ))] + γnHσ(ψ − ψn)φn − δn(ψ)φn ,

∂φt
∂t

= ∇ · [φtKm∇(φtΣ(ψ))] + γtHσ(ψ − ψt)φt − δt(ψ)φt ,

∂m

∂t
= µn(Σ)φn + µt(Σ)φt − νcm ,

∂c

∂t
= κ∇2c+ πn(Σ)φn + πt(Σ)φt − c

τ
.

(47)

(a) (b)

(c) (d)

Fig. 4. Growth of the fibrosis in a homogeneous tissue surrounding a bone. Cell
volume ratio φt + φn at the dimensionless times 30 and 60 is given in (a) and (b).
ECM volume ratio is given in (c) and (d). The line delimits the tumour from the
host tissue.

One of the by-product of this model is the description of the formation of
fibrotic tissues and of tissues stiffer than normal so that they may be some-
times felt with a self-test. This is the aim of the simulation shown in Figure 4.
The situation is similar to the previous one. However, now the ECM is initially
distributed homogeneously with m = 0.2. On the other hand, while prolifer-
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ating tumour cells will produce matrix degrading enzyme as the host cells but
will produce more extracellular matrix than normal. This brings the formation
of a tumour characterized by an amount of ECM with a volume ratio close to
m = 0.3. From the mechanical point of view this increase in the percentage
of ECM would lead to an increase of almost one order of magnitude in tissue
stiffness.

8 Vascularized Tumour Growth

The general model can be modified to describe vascular tumour growth. To
start consider the most simple configuration: a vessel and tumour tissue in
the direct vicinity of the vessel. As a vessel is a natural source of oxygen and
nutrients the region near the vessel is beneficial for tumour growth. On the
contrary, regions very distant from the vessel are likely to be prohibitive for
the tumour.

∂Ωt

x

y

(vessel)

Ωh (host)

Ωt (tumour)

Fig. 5. Tumour cord region Ωt and region of host tissue Ωh. Blood vessel is posi-
tioned along the x-axis (∂Ωsouth).

This configuration may lead to the formation of a tumour along the vessel
that we shall call tumour cord.

Let us consider a two-dimensional domain Ω where tumour occupies the
region Ωt, and the rest of the domain Ωh = Ω \Ωt is occupied by the normal
host tissue (Fig. 5).

We assume that there is a blood vessel which coincides with some of the
boundaries. In particular we shall consider the case when there is a vessel
along the x-axis.
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The basic model is given in Eq.(41). However, for sake of simplicity, we
shall neglect any viscoplastic effects, effectively substituting σim = 0, i = t, n.

The model should be accompanied by the selection of an appropriate
growth term. One might expect that any growth process within the tissue
is closely related to cell metabolism and energy balance. Thus we need to
introduce equations governing the distribution and consumption of various
nutrients, like Eq. (15).

The type of the tumour metabolism assumed shall define which nutrients
are of the most interest and should be included in the model.

For example, let us consider glucose catabolism. In normal conditions its
fission produces approximately 32 molecules of ATP per molecule of glu-
cose [38] and requires 6 molecules of oxygen. However incomplete glucose
oxydation is also possible in hypoxic condition. In this case there are only 2
molecules of ATP produces per molecule of glucose, and the by-product in
this case is lactic acid (Fig. 6).

Glucose

2 Pyruvate

2 Acetyl-CoA + 2 CO2 2 Lactic acid

4 CO2 + 4 H2O

∆G = −2840 kJ/mole
(≈ 30–32 ATP per molecule)

∆G = −146 kJ/mole
(2 ATP per molecule)

glycolysis

aerobic conditions anaerobic conditions

citric acid cycle

Fig. 6. Glucose catabolic pathways (based on [38]). Anaerobic pathway is less energy
efficient and in addition it acidifies the microenvironement, but many tumours rely
on this type of metabolism.

While anaerobic pathway is less energy efficient, it proved to give an evo-
lutionary advantage to tumours as they tend to develop and heavily rely on
their ability for glycolysis oriented metabolism [48, 22, 21].
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Thus the proper description of the metabolism is essential for obtaining
a model, valid for a wide range of tumours. In the most simple case one
may assume that the tumour has not yet developed an ability for anaerobic
metabolism. In this case one may show that it is only concentration of oxygen
that is important within the model.

Let c be the concentration of oxygen, and its distribution be governed by
reaction–diffusion equation

∂c

∂t
= D∆c+ G(c, φ),

where G is the oxygen consumption term:

G(c, φ) =

{
αφf(φ)c, in Ωt

0, in Ωh,

We assume that consumption of the host tissue is negligible with respect to
growing tumour tissue. Rate of oxygen uptake is described by α. Function
f(φ) characterizes intensity of metabolic processes: we expect that cells stop
proliferating (and consuming) at maximum packing density φ∗.

Then we may define a growth/death term of the cellular phase in the
tumour subdomain as

Γ = γφ(f(φ)c− θ)+ − εφ(θ − f(φ)c)+,

where γ and ε are growth and death rates respectively, θ is minimal life main-
tenance cost per cell, and (·)+ denotes the positive part of (·). More details
on how this form of the growth term is obtained can be found in [6].

For the host subdomain Ωh we assume

Γ ≡ 0.

One may refer to [6] for further details on this kind of models.
Let both tissues have identical mechanical properties, and have the same

stress-free packing density φ0, then Σ may be chosen as

Σ(φ) = φ− φ0.

Initially both tissues are in stress free condition:

φ(x, y, 0) = φ0 (48)

We distinguish three kinds of exterior boundaries:

• a boundary coinciding with a blood vessel,
• a remote boundary,
• a symmetry axis.
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For the vascular boundary we assume that the cells do not penetrate into
the vessel, and oxygen supply is always sufficient to maintain its constant
concentration cin:

∂φΣ(φ)
∂n

(x, y, t) = 0, c(x, y, t) = cin, for (x, y) at vascular boundaries,

(49)
where n is an external normal of Ω.

For remote boundaries we assume that they stay undisturbed by the
growth and there is zero flux of oxygen through those boundaries:

φ(x, y, t) = φ0,
∂c

∂n
(x, y, t) = 0, for (x, y) at remote boundaries. (50)

And for a symmetry axis we use

∂φΣ(φ)
∂n

(x, y, t) = 0,
∂c

∂n
(x, y, t) = 0, for (x, y) at an axis of symmetry.

(51)
In the configuration shown in Fig. 5 there are five boundaries: the four

exterior boundaries of model domain Ω, and ∂Ωth, the boundary between Ωt
and Ωh, or tumour–host interface.

We consider the right and the top boundaries to be remote, the bottom
boundary to coincide with the vessel, and the left boundary to be a symmetry
axis.

For the tumour–host interface ∂Ωth we assume continuity of stress (this
implies continuity of φ). For mass preservation reasons the velocity of the
interface should be

v∂Ωth
· n = −Km∇(φΣ(φ)) · n,

where Km = Ktm = Knm.
A typical cord growth in single-vessel configuration is shown at Fig. 7.

Initial cord size was 0.2, and the values of the other parameters are γ = 1,
ε = 0.8, α = 200, Km = 0.01, θ = 0.15. Stress free density was φ0 = 0.75,
f(φ) = 1− φ, D = 1, cin = 1.

The source code used for computer simulations using the model is freely
available at http://code.google.com/p/cord/.

One may observe that the growth of the tumour region is highly anisotropic
with the preferred direction of the vessel. The cord reaches and maintains the
same radius along all the cord except the very tip. Packing density profile of
the later stages suggests that it is at the tip of the cord where proliferation
of the tumour is the most intensive. On opposite, in the region of the steady
radius, there is a hypoxic region near the outer rim of the cord, and this is
where cell death is most commonly observed in the simulation.

In general the behaviour of the tumour observed in the simulation confirms
a well known observation that there exists a certain distance from the vessels
above which the tumour may not go unless it develops ability to anaerobic
metabolism.
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Fig. 7. Cord growth. Thick line lines shows position of the tumour–host interface
∂Ωth. (a) and (c) show oxygen concentration. (b) and (d) show packing density
profile.

9 Final Remarks and Open Problems

The general modelling framework illustrated in this chapter develops on the
basis of the following observations.

• Tumour cells duplicate in a tissue characterized by the presence of other
host cells, a deformable extra-cellular matrix made of many constituents
and of extra-cellular liquid. If we want to model tumour growth from the
macroscopic viewpoint, this induces the need to use a multiphase mathe-
matical model with several constituents.

• Also due to the action of tumour cells themselves, the environment changes
considerably during the evolution which in turn influences the behaviour
of the cells.
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• Cells are bound to the extracellular matrix through adhesion molecules,
mainly integrins, that have a limited strength. In a similar way cells are
also attached to other cells through other adhesion molecules, mainly cad-
herins, that also have a limited strength. On the basis of these experimental
evidences it is proposed that there exists a threshold condition below which
the ensemble of cells stick to the extracellular matrix and move with it.
Above it cells gradually detach to move with respect to the extracellular
matrix.

The model presented here can be specialized in several different ways, e.g.,
specifying the cells populations (endothelial cells, epithelial cells, fibroblasts,
macrophages, lymphocytes), or including the different phases of the cell cycle,
i.e. G0, G1, G2, in view of the application of the model to the study of possible
treatments, or distinguishing different tumour clones characterized by relevant
differences in their behaviour, e.g., cells with normal and abnormal expression
of the tumour suppressor gene, p53 and hormone sensitive and insensitive cells.

In this respect, one of the breakthrough in modelling tumour growth con-
sists in including what happens inside the cells and therefore in developing
multiscale models which take into account of the cascades of events regulating
the behaviour of cells.

Another interesting problem which has not been studied yet is the growth
of tumours in mechanically heterogeneous environment, which includes net-
work structures like blood vasculature, airways, and limphatic system, the
interaction with physical barriers like bones and cartilages, and the pressure
on the surrounding tissues. This would allow to understand vessel collapse
due to tumour growth, capsule formation and degradation, cell compartimen-
talization due to strong inhomogeneities of the ECM distribution, or tissue
invasion related to changes in the adhesion mechanisms.

However, research in this direction still needs a characterization of the
mechanical behaviour of growing tissues and their environment, in order to
evaluate the importance of nonlinear effects, to quantify viscoelastic and plas-
tic effect, and to identify the proper constitutive equation.

So, in developing all the generalizations above, one has to keep in mind
the objective difficulties in obtaining specific measurements from experiments.
For instance, characterizing from the mechanical viewpoint the behaviour of a
growing and remodelling tissue is not easy. Quantifying the dependence of the
production rates of extracellular matrix and matrix degrading enzymes from
the level of stress and/or strain is not easy and data are not available yet,
though the effects were put in evidence many years ago and related therapies
applied in clinical practice, e.g., application of traction in bone healing and
orthodoncy. For this reason, in our opinion, the development of mathematical
models and of experiments have to run along parallel paths stimulating and
cross-fertilizing each other.
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